\(\int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx\) [395]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F(-1)]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 155 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\frac {9 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {9 \sin (c+d x)}{10 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \sec (c+d x)\right )} \]

[Out]

9/10*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d+1/2*(cos(1/2*
d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a^3/d-1/5*sin(d*x+c)/d/cos(d*x+c)
^(5/2)/(a+a*sec(d*x+c))^3-2/5*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)/(a+a*sec(d*x+c))^2-9/10*sin(d*x+c)/d/(a^3+a^3*se
c(d*x+c))/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 155, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.304, Rules used = {4349, 3901, 4104, 3872, 3856, 2719, 2720} \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}+\frac {9 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}-\frac {9 \sin (c+d x)}{10 d \sqrt {\cos (c+d x)} \left (a^3 \sec (c+d x)+a^3\right )}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^2}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a \sec (c+d x)+a)^3} \]

[In]

Int[1/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^3),x]

[Out]

(9*EllipticE[(c + d*x)/2, 2])/(10*a^3*d) + EllipticF[(c + d*x)/2, 2]/(2*a^3*d) - Sin[c + d*x]/(5*d*Cos[c + d*x
]^(5/2)*(a + a*Sec[c + d*x])^3) - (2*Sin[c + d*x])/(5*a*d*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^2) - (9*Sin[
c + d*x])/(10*d*Sqrt[Cos[c + d*x]]*(a^3 + a^3*Sec[c + d*x]))

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 3856

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 3872

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[a, Int[(d*
Csc[e + f*x])^n, x], x] + Dist[b/d, Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]

Rule 3901

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Dist[d^2/(a*b*(2*m + 1)),
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[
m])

Rule 4104

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Dist[1/(a*b*(2*m + 1)), Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A
*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]

Rule 4349

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^3} \, dx \\ & = -\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\frac {3 a}{2}-\frac {9}{2} a \sec (c+d x)\right )}{(a+a \sec (c+d x))^2} \, dx}{5 a^2} \\ & = -\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {\sec (c+d x)} \left (3 a^2-\frac {21}{2} a^2 \sec (c+d x)\right )}{a+a \sec (c+d x)} \, dx}{15 a^4} \\ & = -\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {9 \sin (c+d x)}{10 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \sec (c+d x)\right )}-\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {-\frac {27 a^3}{4}-\frac {15}{4} a^3 \sec (c+d x)}{\sqrt {\sec (c+d x)}} \, dx}{15 a^6} \\ & = -\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {9 \sin (c+d x)}{10 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \sec (c+d x)\right )}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\sec (c+d x)} \, dx}{4 a^3}+\frac {\left (9 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\sec (c+d x)}} \, dx}{20 a^3} \\ & = -\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {9 \sin (c+d x)}{10 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \sec (c+d x)\right )}+\frac {\int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{4 a^3}+\frac {9 \int \sqrt {\cos (c+d x)} \, dx}{20 a^3} \\ & = \frac {9 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{10 a^3 d}+\frac {\operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{2 a^3 d}-\frac {\sin (c+d x)}{5 d \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {2 \sin (c+d x)}{5 a d \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^2}-\frac {9 \sin (c+d x)}{10 d \sqrt {\cos (c+d x)} \left (a^3+a^3 \sec (c+d x)\right )} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.23 (sec) , antiderivative size = 603, normalized size of antiderivative = 3.89 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=-\frac {2 \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec \left (\frac {c}{2}\right ) \sec ^3(c+d x) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{d \sqrt {1+\cot ^2(c)} (a+a \sec (c+d x))^3}+\frac {\cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (-\frac {36 \csc (c)}{5 d}-\frac {36 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{5 d}-\frac {8 \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{5 d}-\frac {2 \sec \left (\frac {c}{2}\right ) \sec ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \sin \left (\frac {d x}{2}\right )}{5 d}-\frac {8 \sec ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{5 d}-\frac {2 \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \tan \left (\frac {c}{2}\right )}{5 d}\right )}{\cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^3}-\frac {9 \cos ^6\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^3(c+d x) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d (a+a \sec (c+d x))^3} \]

[In]

Integrate[1/(Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^3),x]

[Out]

(-2*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2]*S
ec[c + d*x]^3*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*S
in[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(d*Sqrt[1 + Cot[c]^2]*(a + a*Sec[c + d*x])^3)
+ (Cos[c/2 + (d*x)/2]^6*((-36*Csc[c])/(5*d) - (36*Sec[c/2]*Sec[c/2 + (d*x)/2]*Sin[(d*x)/2])/(5*d) - (8*Sec[c/2
]*Sec[c/2 + (d*x)/2]^3*Sin[(d*x)/2])/(5*d) - (2*Sec[c/2]*Sec[c/2 + (d*x)/2]^5*Sin[(d*x)/2])/(5*d) - (8*Sec[c/2
 + (d*x)/2]^2*Tan[c/2])/(5*d) - (2*Sec[c/2 + (d*x)/2]^4*Tan[c/2])/(5*d)))/(Cos[c + d*x]^(5/2)*(a + a*Sec[c + d
*x])^3) - (9*Cos[c/2 + (d*x)/2]^6*Csc[c/2]*Sec[c/2]*Sec[c + d*x]^3*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Co
s[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos
[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[
d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(
Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d*(a + a*Sec[c + d*x])^3)

Maple [A] (verified)

Time = 5.80 (sec) , antiderivative size = 268, normalized size of antiderivative = 1.73

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (36 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}-10 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}+18 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-46 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1\right )}{20 a^{3} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{5} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(268\)

[In]

int(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/20*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(36*cos(1/2*d*x+1/2*c)^8-10*(sin(1/2*d*x+1/2*c)^2
)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^5+18*(sin(1
/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*cos(1/2*d*x+1/2*c)^5*EllipticE(cos(1/2*d*x+1/2*c),2^(
1/2))-46*cos(1/2*d*x+1/2*c)^6+8*cos(1/2*d*x+1/2*c)^4+cos(1/2*d*x+1/2*c)^2+1)/a^3/cos(1/2*d*x+1/2*c)^5/(-2*sin(
1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 344, normalized size of antiderivative = 2.22 \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=-\frac {2 \, {\left (9 \, \cos \left (d x + c\right )^{2} + 22 \, \cos \left (d x + c\right ) + 15\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 5 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 9 \, {\left (-i \, \sqrt {2} \cos \left (d x + c\right )^{3} - 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} - 3 i \, \sqrt {2} \cos \left (d x + c\right ) - i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 9 \, {\left (i \, \sqrt {2} \cos \left (d x + c\right )^{3} + 3 i \, \sqrt {2} \cos \left (d x + c\right )^{2} + 3 i \, \sqrt {2} \cos \left (d x + c\right ) + i \, \sqrt {2}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{20 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/20*(2*(9*cos(d*x + c)^2 + 22*cos(d*x + c) + 15)*sqrt(cos(d*x + c))*sin(d*x + c) + 5*(I*sqrt(2)*cos(d*x + c)
^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x + c) + I*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c
) + I*sin(d*x + c)) + 5*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(2)*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I
*sqrt(2))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 9*(-I*sqrt(2)*cos(d*x + c)^3 - 3*I*sqrt(
2)*cos(d*x + c)^2 - 3*I*sqrt(2)*cos(d*x + c) - I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co
s(d*x + c) + I*sin(d*x + c))) + 9*(I*sqrt(2)*cos(d*x + c)^3 + 3*I*sqrt(2)*cos(d*x + c)^2 + 3*I*sqrt(2)*cos(d*x
 + c) + I*sqrt(2))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a^3*d*c
os(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)**(7/2)/(a+a*sec(d*x+c))**3,x)

[Out]

Timed out

Maxima [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\text {Timed out} \]

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

Timed out

Giac [F]

\[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\int { \frac {1}{{\left (a \sec \left (d x + c\right ) + a\right )}^{3} \cos \left (d x + c\right )^{\frac {7}{2}}} \,d x } \]

[In]

integrate(1/cos(d*x+c)^(7/2)/(a+a*sec(d*x+c))^3,x, algorithm="giac")

[Out]

integrate(1/((a*sec(d*x + c) + a)^3*cos(d*x + c)^(7/2)), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^3} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{7/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^3} \,d x \]

[In]

int(1/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^3),x)

[Out]

int(1/(cos(c + d*x)^(7/2)*(a + a/cos(c + d*x))^3), x)